

Паспорт, руководство по эксплуатации

Система обратного

осмоса AWT ROB

серии 8120, 8220, 8320

Производительность 1 500-11 250 л/ч Обратноосмотическая мембрана LP Рабочее давление не более 20 бар

Перед установкой и эксплуатацией системы прочитайте данное руководство. С вопросами по эксплуатации, устранению и техническим решениям по водоочистке обращайтесь к специалистам компании Атек.

- **г. Москва,** ул. Шоссейная, д. 90, стр. 57, тел. +7 (999) 965 13 49
- **г. Новосибирск,** ул. 2-я Станционная, д. 42, тел. +7 (383) 325 78 47, 233 32 89
- **г. Томск,** ул. Березовая, 2/5, тел. +7 (3822) 90 15 77

Содержание

Введение	4
Принцип работы	5
Дополнительные опции	8
Общие указания и техника безопасности	
Правила транспортировки и хранения	11
Монтаж	11
Техника безопасности	12
Технические условия	
Требования к качеству исходной воды	13
Технические характеристики серийных СОО	14
Местность систем ROB	15
Ввод в эксплуатацию	
Установка	17
Запуск	19
Автоматика	23
Обслуживание	
Общие положения	29
Замена картриджа фильтра механического	29
Химическая регенерация	30
Замена обратноосмотических мембран	34
Консервация обратноосмотических мембран	34
Устранение неисправностей	36
Приложения	
Принципиальная гидравлическая схема	41
Принципиальная электрическая схема	42
Дополнительные опции	44
Перечень интерфейсных сигналов и данных ЛСА	45
Гарантийный талон	48
Рабочий журнал	52
Акт комплексного испытания	53
Копия декларации соответствия	54
Копия сертификата соответствия	55

Система обратного осмоса AWT ROB (далее — COO) предназначена для глубокой очистки и обессоливания солоноватой воды прибрежных морских зон и скважин, а также очистки стока. COO обеспечивает значительное снижение общей минерализации исходной воды (в т.ч. солей жесткости, тяжелых металлов, фторидов, нитратов, аммония и т.п.), органических веществ, бактерий и вирусов и позволяет довести качество воды до требуемых норм или норм СанПиН 1.2.3685-21.

Требования к помещениям, выделяемым для установки СОО, а также условия окружающей среды, в которых будет работать система, указаны в разделе «Технические условия» настоящего руководства.

При соблюдении требований и условий эксплуатации, указанных в данном руководстве, обеспечивается длительное и надежное функционирование системы в течение всего срока службы. Случаи остановок обусловлены лишь проведением планового обслуживания или ремонта компонентов системы, реагентных промывок, или пусконаладочных работ других видов оборудования.

СОО подключается к линии исходной воды, к линии отвода очищенной воды, к линии дренажа и электросети с параметрами, указанными в разделе «Технические условия».

С целью оптимального выбора модели СОО и типа используемых в ней обратноосмотических мембран Заказчик должен предоставить анализ исходной воды (все необходимые показатели перечислены в опросном листе для подбора СОО) и требования к качеству очищенной воды (по СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», либо особые требования, обусловленные определенными технологическими процессами).

Версия 5.15 от 20.10.2025

Завод-изготовитель имеет право изменять состав оборудования без ухудшения свойств конечного продукта.

Обозначение

Система обратного осмоса

Расшифровка опционала

Sf - рама из нержавеющей стали

Ir - интеграция в SCADA или существующую АСУ RS-485

Ow – система диспетчеризации Wi-Fi

Oe - система диспетчеризации Ethernet - кабель

Og - система диспетчеризации GSM

Am – автоматический подмес Le- интеграция в SCADA или существующую ACУ Ethernet – кабель

Сw-промывка чистой водой

Вр-байпас высокого давления

Нт-ручной подмес

Z-звуковая сигнализация

F-частотный преобразователь.

Принцип работы

Обратный осмос — мембранный метод очистки воды от всех растворенных в ней примесей. Получение очищенной воды достигается разделением поступающей в СОО воды (исходной воды) на две среды: чистую воду (пермеат) и неочищенную воду (концентрат). Извлечение чистой воды происходит на поверхности обратноосмотической мембраны под высоким давлением. Молекулы воды проходят через мембрану под давлением и поступают в линию очищенной воды — пермеат. Молекулы загрязнений «отфильтровываются» и накапливаются в оставшейся неочищенной воде — концентрат.

СОО подключается к линии исходной воды, линии отвода пермеата и линии дренажа. Помимо этого, СОО имеет также следующий вспомогательный вход: вход для подачи антискаланта.

Для защиты насоса центробежного и обратноосмотических мембран от повреждения механическими частицами, данная СОО оборудована фильтром механическим с рейтингом фильтрации 10 мкм.

Работа СОО организована следующим образом:

В режиме производства для подачи исходной воды открывается входная запорная арматура, расположенная после механических фильтров. Сначала вода для очистки от механических частиц поступает на фильтр механический. В СОО с помощью насоса-дозатора (опция) происходит дозирование ингибитора осадкообразования для жесткой воды, либо других реагентов. Затем вода поступает на насос высокого давления. Насос нагнетает рабочее давление и подает воду в корпус давления с обратноосмотическими мембранами. В корпусах давления вода проходит через обратноосмотические мембраны, в которых образуется пермеат, собирающийся в осевую трубу и выходящий из корпусов давления через осевые патрубки в торцах. Образовавшийся пермеат отводится через ротаметр. Концентрат выходит под давлением из корпуса давления, попутно проходя через редуктор давления. Редуктор давления выполняет функцию ограничителя давления, понижая его до оптимальных значений, необходимых для работы СОО, сохраняя целостность всех элементов и тем самым предотвращая нарушения целостности трубопровода. Выходящий поток на линии концентрата делится на два: возвратный и сброс. Возвратная часть концентрата подмешивается к исходной воде для повторной очистки. Остальная часть отводится в дренаж через клапан балансировочный сброса концентрата и ротаметр. Типичная конверсия для подземной и поверхностной воды солоноватого типа составляет от 50 % до 65 % (пропорция «пермеат: концентрат» составляет от 1:1 до 2:1).

Соотношение пермеата и концентрата (сброс и возврат) регулируется таким образом, чтобы избежать сильного концентрирования и поддержать необходимую скорость потока, тем самым препятствуя появлению отложений на поверхности обратноосмотических мембран. Чрезмерное концентрирование вызывает осаждение на поверхности обратноосмотических мембраны слоя малорастворимых соединений и, в конечном итоге, выводит её из строя.

Расходы сброс концентрата, пермеата и возврата концентрата, рабочее давление в корпусах давления настраиваются: редуктором давления, клапанами балансировочными на линии концентрата (сброс и возврат). Измерение осуществляется с помощью ротаметров.

Если на вход насоса центробежного поступает недостаточное количество исходной воды и давление воды до насоса падает ниже 10 бар, то СОО останавливается и через установленный промежуток времени снова запускается. Если давление до насоса не нормализовалось, то СОО переходит в режим «АВАРИЯ», а входная запорная арматура с электроприводом перекрывает поток исходной воды. В этом режиме СОО находится до тех пор, пока вручную не будет сброшена «АВАРИЯ».

Если на напорной линии насоса центробежного давление воды возрастает выше 21 бар, реле высокого давления/преобразователь давления отключает СОО и блокирует все операции, а входная запорная арматура с электроприводом перекрывает поток исходной воды. СОО отключается и переходит в режим «АВАРИЯ». Включение будет возможно только после сброса режима «АВАРИЯ».

«ОЖИДАНИЕ» запускается гидропромывка СОО. Есть возможность запуска гидропромывки и в режиме «ОЖИДАНИЕ», и в режиме «ПРОИЗВОДСТВО», а также установить интервал между гидропромывками в каждом из этих режимов.

Качество пермеата измеряется и отслеживается управляющим контроллером по его остаточному солесодержанию путем измерения удельной электропроводности. В случае превышения предварительно заданного максимально допустимого значения электропроводности контроллер отключает СОО, а входная запорная арматура перекрывает поток исходной воды.

При отключении СОО вследствие несоответствия рабочих параметров заданным, контроллер выдает визуальный и/или звуковой сигнал тревоги (опция).

Включение и отключение контролируется датчиком уровня воды, установленным в емкости для чистой воды. При повышении уровня воды выше максимального, фильтрация прекращается, и СОО переходит в режим «ОЖИДАНИЕ», при снижении уровня чистой воды ниже минимального — СОО снова переходит в режим «ПРОИЗВОДСТВО».

При переходе СОО из режима «ПРОИЗВОДСТВО» в режим «ОЖИДАНИЕ» запускается гидропромывка СОО. Есть возможность запуска гидропромывки и в режиме «ОЖИДАНИЕ», и в режиме «ПРОИЗВОДСТВО», а также установить интервал между гидропромывками в каждом из этих режимов.

Схема (Приложение – Дополнительные опции) показывает все дополнительные опции, используемые в серии ROB. В квадрат под названием опции ставится отметка, выделяющая те опции, которые используются в текущей сборке, поставляемой с паспортом. На схеме указаны буквенные обозначения дополнительных опций, используемых в присвоении шифра системе.

Реализуемые дополнительные опции:

- 1. интеграция в АСУ заказчика;
- 2. диспетчеризация через шлюз в OwenCloud;
- 3. звуковая сигнализация;
- 4. автоматический подмес;
- 5. панель оператора;
- 6. ручной подмес;
- 7. промывка чистой водой;
- 8. рама из нержавеющей стали

Способы внедрения опций в базовую схему и ее функции описаны ниже.

1. Интеграция в АСУ заказчика

Для реализации этой опции используется программируемое реле ПР200 – 24.2.2.0. Оно оснащено двумя интерфейсами RS-485. Как показано на схеме, подключение к интерфейсу RS-485 реализовано через клеммную группу X5.

Через свободный интерфейс может передаваться диагностическая информация о состоянии СОО на удаленное АСУ.

Подробное описание опции указано в Приложении 3 данного паспорта

2. Диспетчеризация через шлюз в OwenCloud

Для реализации этой опции в стандартную схему добавляется сетевой шлюз ПВ210, предназначенный для подключения СОО, имеющего интерфейс RS-485 (Modbus) к облачному сервису OwenCloud. Для подключения к облачному сервису через ПВ210 достаточно установить сим-карту.

Как показано на схеме для работы сетевого шлюза ПВ210 подведено напряжение 24В с блока питания. Через свободный интерфейс RS-485, сетевой шлюз подключен к программируемому реле ПР200. Для передачи диагностической информации в облачный сервис. Облачный сервис предназначен для удаленного хранения и передачи информации.

3. Звуковая сигнализация

Для реализации этой опции в стандартную схему, вместо световой индикации добавляется зуммер. Для появления звуковой сигнализации об аварии. Как показано на схеме зуммер подключается к дискретному выходу (DO7) на ПР200 и к общему нулевому проводнику схемы.

4. Автоматический подмес

Для реализации этой опции, в стандартную схему нужно добавить дополнительный датчик солесодержания и регулировочный кран. В схеме используется кран 24В с аналоговым управлением 4-20 мА или 0-10 В. Управление подмесом осуществляется с помощью программного обеспечения ПР200. В зависимости от типа управления краном используются разные модификации ПР200. В настройках ПР-200 устанавливается требуемое значение электропроводности на выходе из установки. Опираясь на показания датчика, контроллер регулирует поток с помощью регулировочного крана, стремясь поддерживать задание.

Для управления краном 4-20 мА используется токовый аналоговый выход АО1. Для управления краном 0-10 В, используется аналоговый выход по напряжению АО.

Для получения обратной связи о качестве пермеата используется датчик солесодержания, который подключается к аналоговому входу AI4 на ПР200.

Внутренние подключения выполнены согласно схеме. Внешние подключения датчика солесодержания выведены на клеммную группу X2, питание и управление крана выведено на клеммную группу X4.

5. Панель оператора

Для реализации этой опции, в стандартную схему необходимо добавить сенсорную панель СП307-Б. Сенсорная панель предназначена для наглядного отображения значений параметров и оперативного управления, а также ведения архива аварий.

Для работы панели на вход подается питающее напряжение 24В. Для получения и передачи информации сенсорную панель подключают к интерфейсу RS-485 на ПР200.

6. Ручной подмес

Подключения для данной опции включены в стандартную схему щита управления. Для реализации опции изменяется гидравлическая схема СОО. В гидравлической схеме появляется линия подмеса и соленоид подмеса 220В. Соленоид подмеса будет открываться совместно с работой насоса-дозатора в режиме «Производство».

Как показано на схеме для подключения соленоида подмеса используются клеммная группа XT2. Фаза подводится через перемычку с промежуточного реле K5 на полюс которого уже подключена фаза насоса дозатора.

7. Промывка чистой водой

Для реализации этой опции в стандартную схему добавляется кран с электроприводом 24В и промежуточное реле К9. Для управления промежуточным реле используется дискретный выход DO6 на ПР200.

Управление промывкой осуществляется автоматически с помощью программного обеспечения ПР200. При остановке системы будет произведена промывка чистой водой, при этом входной кран закроется, а кран подачи чистой воды откроется. Если включена промывка в ожидании, осмос будет промываться чистой водой.

📚 Общие указания и техника безопасности

Правила транспортировки и хранения

Упакованная СОО транспортируется всеми видами транспортных средств в вертикальном положении. При транспортировке, погрузочно-разгрузочных работах и хранении должна быть исключена возможность воздействия ударов, вибрации и атмосферных явлений. Температура окружающей среды при хранении СОО должна быть от минус 10 °C до плюс 40 °C при отсутствии резких перепадов температуры. СОО не предназначена для эксплуатации на открытых площадках. Влажность окружающего воздуха должна быть не более 90 % без конденсации влаги во всем диапазоне температур.

После транспортировки в холодное время года СОО должна находиться в отапливаемом помещении не менее 24 часов перед монтажом и вводом в эксплуатацию.

Монтаж

Перед началом монтажа изучите настоящее руководство! Неверный монтаж освобождает Поставщика и Завод-изготовитель от выполнения гарантийных обязательств.

Монтаж и подключение СОО к коммуникациям должны выполняться сервисной службой производителя или другими специалистами, обладающими требуемой квалификацией.

СОО монтируется на ровной горизонтальной поверхности. Для доступа к СОО с целью ремонта и сервисного обслуживания должны быть обеспечены зазоры до строительных конструкций: справа или слева - не менее 1000 мм, сверху - не менее 200 мм.

Место установки СОО должно быть защищено от воздействия атмосферных явлений, в воздухе не должно быть паров агрессивных веществ, частиц пыли и волокнистых материалов. СОО монтируется в отапливаемом помещении с температурой воздуха не ниже плюс 5 °С и не выше плюс 35 °С и относительной влажностью воздуха не более 75 %. Исключается выпадение конденсата.

Подводящие и отводящие трубопроводы должны обладать достаточной пропускной способностью. Качество исходной воды, температура и давление должны соответствовать требованиям, указанным в данном руководстве.

Техника безопасности

К работе с COO допускаются лица, прошедшие инструктаж по технике безопасности и ознакомленные с устройством COO и правилами её эксплуатации.

На СОО распостраняются все требования по технике безопасности при эксплуатации электрооборудования, питание которого осуществляется напряжением 220/380 В и частотой 50 Гц.

При отсутствии заземленного источника электропитания необходимо надежно заземлить конструкцию, подключив её к контуру заземления помещения, шину заземления РЕ. Заземление СОО AWT осуществлять кабелями. Сечение кабеля следует подбирать в зависимости от номинального тока насоса, в соответствии с таблицей ниже.

Требования к заземлению установки

Мощность электродвигателя, кВт	1,1-5,5	5,5-11	11-18	18-22	22-30	30-37	37-55	55+
Номинальный ток насоса, А	2,5-11	11-21	21-32	32-50	50-67	67-80	80-100	> 100
Сечение заземляющего кабеля, мм ²	2,5	4	6	10	16	25	35	35+

При включенной СОО в сеть электропитания запрещается:

- вскрывать контроллер, подключенный к СОО, а также корпуса давления;
- отсоединять трубопроводы, находящиеся под давлением.

Таблица шумовых характеристик насосов

Мощность электродвигателя, кВт	Шум при частоте 50 Гц, Дб
0,37-1,11	52
1,1-2,2	58
2,2-3	64
3-4	67
4-7,5	69
7,5-18,5	71
18,5-37	73
37-45	75
45-55	77
55-90	79
90-110	80

хх Технические условия

Требования к качеству исходной воды

Показатель	Максимальное значение
Жесткость, мг-экв/л (°Ж)	7*
Диапазон значений pH исходной воды: оптимальный рабочий при реагентной промывке	· · ·
Железо (общее), мг/л	0,1
Марганец, мг/л	0,1
Бор, мг/л	0,5
Силикаты (диоксид кремния), мг/л	10
Общее солесодержание, мг/л	5000**
Окисляемость перманганатная, мгО2/л	3,0
Остаточный хлор, озон, KMnO4, мг/л	0,1
Содержание нефтепродуктов и СПАВ, мг/л	0,1
Мутность, мг/л	0,5
Сероводород, мг/л	0,1
Микробиологические показатели	СанПиН 1.2.3685-21
Механические примеси	отсутствие
Температура воды на входе, °С	5-30
Давление воды на входе, бар	2-5

^{*} В случае превышения данных значений к исходной воде дозируется антискалант (ингибитор)

Требования к электросети

Наименование	Характеристика
Напряжение, В	360-420
Частота, Гц	50

^{**} Допускается применение СОО при солесодержании выше указанного. Однако выходные параметры системы могут значительно отличаться от предоставленных в паспорте. Важно: Коррозия нержавеющей стали может произойти при следующих условиях:

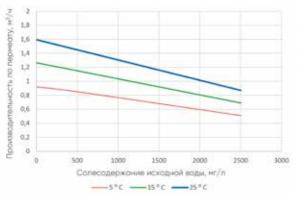
При содержании хлоридов и сульфатов в отношении 1:1

^{2.} При содержании хлоридов выше 450 ppm".

В противном случае случае требуется производить СОО с использованием других материалов (необходимо связаться со специалистами AWT).

Сечение подключаемого кабеля

Соответствует номиналу вводного автоматического выключателя


Технические характеристики серийных СОО

						Модель АWT	b AWT				
Параметры		ROB- 1,5	ROB- 2,25	ROB-	ROB- 3,75	ROB- 4,5	ROB-	ROB- 7,5	ROB- 6,75	ROB-	ROB- 11,25
Тип корпуса		Одноме	Одноместный (серия 8120)	оия 8120)	Дв	Двухместный (серия 8220)	(серия 82	20)	Трехмес	Грехместный (серия 8320)	ия 8320)
Номинальная прои	Номинальная производительность*, ³/ч	1,5	2,25	23	3,75	4,5	9	7,5	6,75	6	11,25
e c	в режиме производства	2-4	3-5	4,68	5,76	69'9	6,3	E	9-11	13-15	91
Расход воды, м³/ч	в режиме гидропромывки, до	7	ľ	8,5	8,5	77	59	18	F	15	29
			_	Присоединительные размеры	ельные ра:	змеры					
Вход питающей воды, G″	ды, G″	11/2	11/2	17%	1 1/4	11/2	2	2	2	2 1/2	2 1/2
Выход концентрата, G"	a, G.	11/2	1 1/2	11/4	17%	-	7	7	7	2 1/2	2 1/2
Выход пермеата, G"	aí.	-	11%	-	1 1/4	11%	11%	11/2	11/2	2	11/2
Подключение ВХОД К СІР-мойке, G"	п	3/4	3/4	3/4	3/4	٦	-	-	-	-	1 1/4
ВВыход СІР-мойке (концентрат/ пермеат), G"	(концентрат/	3/4	3/4	3/4	3/4	٦	-	-	-	-	11/4
Тип фильтра механического	ического	BB20	BB20	BB20	BB20	BB20	BB20	BB20	BB20	BB20	P
Количество фильтров, шт	ов, шт	-	-	2	2	2	м	м	м	m	-
Мощность насоса центробежного, не более кВт	центробежного,	7,5	2,5	F	F	F	15	51	5	18,5	18,5
Электрическое напряжение	пряжение					3F38	3F380B				
Габариты (Ш × Г × В), мм	3), мм	1700	1700 × 965 × 1800 ± 50	1 + 50		2700 × 1000 × 2000 ± 50	× 2000 ± 50		4000	4000 × 1300 × 2100 ± 50	0 ± 20
Габариты в трансп × Г × В), мм	Габариты в транспортной упаковке (Ш \times Г \times В), мм	1860	1860 × 1150 × 2000 ± 50	0 ± 20		3000 × 1200 × 2000 ± 50	× 2000 ± 50		4200	4200 × 1500 × 2300 ± 50	0 = 50
Масса сухой СОО, кг (не более)	кг (не более)	280	330	400	450	700	930	720	920	800	950
В транспортной уп	В транспортной упаковке, кг (не более)	430	480	250	900	700	860	950	007	820	1000

^{*} при рабочем давлении 20 бар, температуре воды +10 °С, солесодержании исходной воды 4000 мг/л, при свободном изливе перместа, с новыми мембранными элементами (при снижении давления и/ или температуры производительность уменьшается). При указанных выше условиях в зависимости от типа и концентрации растворенных веществ задерживающая способность составляет от 95 до 99 %.

Местность систем ROB

Система	Местность корпусов	Количество мембран
ROB-1,5	Одноместный	2
ROB-2,25	Одноместный	3
ROB-3	Одноместный	4
ROB-3,75	Двухместный	5
ROB-4,5	Двухместный	6
ROB-6	Двухместный	8
ROB-7,5	Двухместный	10
ROB-6,75	Трехместный	9
ROB-9	Трехместный	12
ROB-11,25	Трехместный	15

Расчетный график зависимости производительности одной мембраны XLP от общего солесодержания при заданных температурах*

^{*} Носит информационный характер

Вид сверху

На изображениях в качестве примера представлен AWT ROB-11,25 серии 8320.

16

Установка

- Перед вводом в эксплуатацию необходимо осуществить протяжку всех резьбовых соединений.
- Все работы с новыми обратноосмотическими мембранами производить в резиновых перчатках для защиты их от загрязнения.

Манжетные уплотнения концевых адаптеров и обратноосмотических мембран перед установкой смазываются глицерином. Запрещается использовать другие виды смазок!

При работе СОО на емкость с механическим поплавком Завод-изготовитель снимает гарантийные обязательства.

- При совместной эксплуатации СОО и напорных фильтров рекомендуется в верхней точке напорного фильтра устанавливать антивакуумный клапан для предотвращения возникновения отрицательного давления в корпусах фильтров.
- Разместите СОО на ровной поверхности, рассчитанной на ее вес. Внимательно осмотрите на предмет отсутствия механических повреждений и разобранных соединений. В случае необходимости, отрегулируйте высоту ножек. Соберите разобранные соединения.
- 2. Протянуть контакты.
- Разберите фрагмент отводящего трубопровода от торца корпуса давления.
 Выкрутите болты, удерживающие стопорные полукольца в торцевых пазах
 - При извлечении торцевой крышки корпуса давления запрещено тянуть за фитинг и трубопровод ПВХ.

корпуса давления. Извлеките торцевую крышку.

- 4. Достаньте обратноосмотические мембраны из заводской упаковки.
- **5.** Проверьте наличие манжетных уплотнений, при необходимости установите манжетные уплотнения на обратноосмотическую мембрану. Манжетные уплотнения установите со стороны входного потока.
- 6. Установите обратноосмотические мембраны в корпуса давления. На

обратноосмотической мембране и корпусе давления расположена стрелка с указанием направления потока.

Необходимо вставить обратноосмотическую мембрану в корпус давления в соответствии с направлением стрелок, они должны совпадать. После установки обратноосмотической мембраны в корпус давления

На обратноосмотической мембране расположены резиновые уплотнения при установке её в корпус давления против стрелки направления потока могут возникнуть трудности, что может привести к ухудшению свойств обратноосмотических мембран.

необходимо установить упорный конус широкой частью к мембране, а узкой к торцевой крышке.

- 7. Установите торцевые крышки, совмещая осевой патрубок с соединительной муфтой в крайней обратноосмотической мембране. Убедитесь в отсутствии замятий и перекручиваний уплотнительных колец. Установите в пазы стопорные полукольца. Смонтируйте фрагменты трубной обвязки, соединяющие между собой корпуса давления, которые были демонтированы для обеспечения доступа.
- 8. Установка картриджей в фильтр механический:
 - 8.1. При установке на СОО фильтра механического типа Big Blue:

Необходимо с помощью специального ключа открутить колбы фильтров механических и установить картриджи механической очистки.

- 8.2. При установке на СОО фильтра механического типа мультипатронный:
 - Необходимо снять крышку фильтра механического, открутив фиксаторы. Открутить гайку со шпильки и снять съёмную крышку. Далее на направляющую установить картридж и собрать мультипатронный фильтр обратно.
- 9. Подключите СОО к линиям водоснабжения, водоотведения и емкости очищенной воды. Соблюдайте правила монтажа и безопасности. Дренажный трубопровод должен быть подведен к дренажу с гидроразрывом или через обратный клапан. Если давление в сети водоснабжения превышает 5 бар, дополнительно должен быть установлен редукционный клапан.
- 10. Поплавковый выключатель необходимо установить внутри емкости для пермеата,

установив балласт на необходимом расстоянии, чтобы обеспечить достаточный ход поплавка по высоте бака. Отключение поплавка должно происходить на уровне заполненного бака.

- 11. Если исходная вода поступает в СОО из напорного фильтра (с отключением воды на регенерацию) к выходам X1/3 и X1/4 клеммного блока (напряжение на контакте 24 В), необходимо подключить либо концевой микропереключатель, либо выход типа «сухой контакт» клапана управления напорного фильтра.
- 12. Если предусматривается дозирование ингибитора осадкообразования или другого реагента для СОО, необходимо рядом установить емкость для реагента и смонтировать в ней донный фильтр с клапаном от насоса-дозатора, подключенный к всасывающему патрубку дозирующей головки. Реагент необходимо разбавить и настроить частоту впрыскивания в соответствии с инструкцией на реагент и рекомендациями инженера-технолога.

При установке станции дозирования хим.реагента необходимо:

- подключить датчик уровня в емкости дозации к насосу-дозатору;
- насос-дозатор подключить к клеммам X3/5, X3/6, X3/7.
 - 3апрещается удлинение кабеля подключения поплавкового выключателя более чем на 10 м. Не допускается подключение дополнительных устройств на линию поплавкового выключателя.
 - Комплексные заводские испытания СОО проходит при рабочем давлении 20 бар.

Максимально допустимое давление на линии пермеата не должно превышать 4 бара. При привышении рабочего давления (свыше 20 бар) перед корпусом давления и максимально допустимого значения (4 бара) на выходе линии пермеата Завод-изготовитель не несет ответсвенности за целостность СОО.

Запуск

- 1. Проверьте положение кнопки «АВАРИЙНЫЙ СТОП». Она должна быть выключена отжата (повернуть по указанным стрелкам).
- 2. Откройте шкаф управления. Включите все автоматические выключатели.
- **3.** Краны балансировочные сброса и возврата концентрата должны быть полностью открыты. Редуктор давления воды полностью открыт (регулировочный винт полностью затянут).
- **4.** Переведите четыре двухпозиционных переключателя на лицевой панели щита в крайнее левое положение.
- **5.** Переведите СОО из режима «СТОП» в режим «Ручное управление», нажав на кнопку «ПУСК» в первой строке основного экрана контроллера.

Для этого, с помощью кнопок «<<» и «>>» пролистайте строки до самого верха, затем нажмите кнопку «SEL», в первой строке экрана контроллера должна замигать надпись «Пуск». С помощью кнопок «<<» и «>>» сменить слово «Пуск» на «ПУСК» и нажмите клавишу «ОК». На экране контроллера режим «СТОП» должен измениться на надпись «РУЧН».

- **6.** С помощью переключателя "ВХОДНОЙ КРАН" откройте входную запорную арматуру с электриприводом и заполните СОО водой.
 - Для правильной работы минимальный дифференциал давления для электромагнитного клапана должен быть равен 0,5 бар.
- Проконтролируйте, чтобы насос центробежный заполнился водой. Для этого открутите контрольную заглушку, указанную на картинке.

Обратите внимание, что в зависимости от типа насосов, данная заглушка может находиться в разных местах

Контрольная заглушка

Дождитесь полного вытеснения воздуха из насоса центробежного. После появления воды из отверстия в месте заглушки, необходимо её закрутить.

- 8. Прикройте клапан балансировочный сброса концентрата, на экране контроллера в сроке «Задание» установите требуемое давление после насоса и с помощью переключателя «НАСОС» запустите насос центробежный.
- Затем начните постепенно закрывать клапаны балансировочные сброса и возврата концентрата.
 - Категорически запрещается полностью закрывать клапан балансировочный сброса концентрата. Это может привести к выпадению солей на обратноосмотических мембранах, уплотнению материала обратноосмотических мембран с необратимым ухудшением рабочих характеристик, а так же к перегреву электродвигателя насоса центробежного и поломке трубопроводов линии концентрата.

- Запрещается запускать СОО с закрытыми клапанами балансировочными. При первом запуске клапаны балансировочные должны быть полностью открыты. Убедитесь, что редуктор также полностью открыт во время первого запуска СОО.
- 10. Доведите соотношение расходов пермеат: сброс концентрата до соотношения 2:1. Следите за давлением в СОО с помощью манометров. Оно не должно превышать проектные гидравлические параметры.
- 11. Переведите все переключатели в левое положение.
- 12. Переведите переключатель «РУЧ/АВТО») в правое положение, контроллер перейдет в режим «СТОП».
- 13. Переведите СОО из режима «СТОП» в режим «АВТО», нажав на кнопку «ПУСК» в первой строке основного экрана контроллера. Для этого, с помощью кнопок «<>» и «>>» пролистайте строки до самого верха, затем нажмите кнопку «SEL», в первой строке экрана контроллера должна замигать надпись «Пуск». С помощью кнопок «<<» и «>>» смените слово «Пуск» на «ПУСК» и нажмите клавишу «ОК». На экране режим «СТОП» должен измениться на «АВТО» и во второй строке отобразится текущий режим. Всё оборудование перейдет под управление контроллера и, если ёмкость чистой воды пустая, то инициируется режим «Гидропромывка» и запустится насос центробежный, после окончания гидропромывки контроллер перейдет в режим «Производство». Если ёмкость полная, то контроллер проведет гидропромывку и перейдет в режим «Ожидание».
- Убедитесь в том, что крыльчатка насоса центробежного вращается в направлении стрелки на кожухе насоса центробежного. Если направление не совпадает, то обзяательно остановите и обесточьте СОО и поменяйте местами две фазы кабеля питания.
- 14. Отрегулируйте редуктор давления, пока давление после насоса центробежного не поднимется до 15-20 бар. Следите, чтобы давление в трубопроводе ПВХ после редуктора давления не превышало 10 бар. Не повышайте давление на обратноосмотической мембране выше 20 бар.

- 15. После завершения регулировки:
 - давление на обратноосмотической мембране должно быть в диапазоне 15-20 бар. Если значение давления будет выше 20 бар, то СОО остановится и перейдет в режим «АВАРИЯ»
 - давление после редуктора давления должно быть в диапазоне 2-8 бар;
 - расход на ротаметре сброса концентрата должен быть в пропорции 1:2 к расходу на ротаметре пермеата.
- 16. Оставьте СОО работать на 30 минут. После этого сверьте показания всех манометров и ротаметров и занесите их в раздел «Рабочий журнал» данного руководства. В случае изменения показаний ротаметров, по сравнению с первоначальными, произведите повторное регулирование. Обязательно слейте пермеат, полученный в первые 30 минут!
 - После запуска СОО в работу некоторое время необходимо осуществлять сброс пермеата в дренаж. Данная процедура необходима для вымывания консерванта из обратноосмотической мембраны.
 - Рекомендуется обеспечить повышенный контроль за СОО в течение первых суток после запуска в работу.

Автоматика

Система автоматического управления (далее САУ) включает в себя шкаф управления на основе программируемого реле ПР-200 призводства ОВЕН, первичные датчики и исполнительные механизмы.

САУ обеспечивает следующие функции:

- контроль технологических параметров;
- ручное и автоматическое управление СОО;
- защиту технологического оборудования от аварийных ситуаций;
- дистанционный контроль режимов работы (опция).

Экраны контроллера:

В зависимости от режима работы СОО и статуса входных сигналов на ЖК дисплее контроллера отображаются следующие экраны:

- Экран загрузки при включении контроллера на экране загрузки отображается текущая версия прошивки.
- Экран уровня доступа на данном экране производится ввод пароля. В зависимости от введенного пароля, пользователь получает соответствующий уровень доступа.
- Экран текущих параметров на данном экране отображается текущее состояние СОО, значения технологических параметров, наработка в часах, дата и время.
- Экран аварий на данном экране выводится причина аварийной ситуации.
 Появляется всплывающий экран, имеющий приоритет над всеми остальными.
 Сворачивается после квитирования («сброса») аварии.

 Экран настроек — на данном экране отображаются настройки, доступные пользователю в зависимости от его уровня доступа.

Переключение между экранами осуществляется последовательных зажатием кнопок «ALT» и «ESC», экран аварии открывается автоматически при возникновении аварии.

Перелистывание строк на любом экране происходит при нажатии кнопок «♠» или «♣». Для ввода команд и данных используется кнопка «SEL», подтверждение ввода кнопкой «ОК», отмена ввода кнопкой «ESC».

Описание оборудования на лицевой панели шкафа:

- Руч/Авто переключатель режима «РУЧ»/«АВТО»;
- Входной кран ручное открытие входного крана;
- Кран гидропромывки ручное открытие промывочного крана;
- Насос ручной запуск насоса центробежного;
- Авария Красная кнопка сброса аварии с индикацией;
- Сеть Индикация наличия питания;
- **Авар. Стоп** кнопка аварийной остановки СОО.

Уровень доступа:

Перейти в экран настроек возможно только после ввода пароля, САУ имеет два уровня доступа — «Наладчик» и «Сервис». В зависимости от введенного пароля, на экране будут отображены доступные данной категории настройки.

Пароль для доступа к настройкам наладчика «1111», настройки сервиса содержат критические уставки и для доступа к ним свяжитесь с Заводом-изготовителем.

- «НАЛАДЧИК» пользователь с данным уровнем доступа имеет возможность просматривать текущие параметры, журнал и изменять настройки 1 группы;
- «СЕРВИСНАЯ СЛУЖБА» пользователь с данным уровнем доступа имеет возможность полной конфигурации контроллера, просматривать текущие параметры, изменять настройки 1 и 2 группы.

1 группа:

- Задержка включения насоса центробежного; (5 секунд)
- Длительность промывки; (60 секунд)
- Промывка в режиме «Ожидание»; (вкл/выкл)
- Периодичность промывки в режиме «Ожидание»; (4 часа)
- Промывка в режиме «Производство»; (вкл/выкл)
- Периодичность промывки в режиме «Производство»; (12 часов)
- Задержка аварии Э/П пермеата; (90 секунд)
- Максимальная Э/П пермеата; (50 мкСм/см)
- Задержка аварии низкого давления; (15 секунд, но не более 30).
- Задержка рестарта; (60 секунд)
- Количество рестартов при аварии низкого давления. (2)

2 группа:

- Максимальное давление;
- Эксплуатация в ручном режиме.

Режимы работы СОО:

Управление СОО может осуществляться в автоматическом и ручном режимах. Переход из автоматического режима в ручной и обратно осуществляется переключателем SA1 (отвечает за включение режима: руч/авто) на передней панели шкафа управления.

Состояния СОО в автоматическом режиме:

 Режим «СТОП». Переход в этот режим осуществляется изменением положения переключателя «РУЧ/АВТО» на передней панели шкафа управления, а также при возникновении аварии или эксплуатации СОО в ручном режиме более 3 часов. В данном режиме контролируется максимальное давление после насоса центробежного, уровень в емкости дозации антискаланта (если датчик подключен к САУ). Все исполнительные механизмы остановлены/закрыты.

- 2. Режим «Работа». Переход в этот режим осуществляется изменением положения переключателя «РУЧ/АВТО» в положение «АВТО» и нажатием на кнопку «ПУСК» на экране контроллера. После этого СОО переходит в режим «АВТО» и переходит под управление контроллера. При этом происходит контроль технологических параметров и формирование соответствующих предупредительных и аварийных сигналов и защит (ПАСиЗ). Изменение положения переключателей, всех кроме "РУЧ/АВТО" на панели щита не влияют на работу оборудования.
 - 2.1. Подрежим «Ожидание». Переход в этот режим происходит при заполнении накопительной емкости или при сигнале внешней остановки. В этом режиме входная и промывная запорная арматура с электроприводом находящаяся в закрытом состоянии, осуществляет контроль уровня пермеата в накопительной емкости и состояние контакта «внешний СТОП». При опустошении накопительной емкости СОО переходит в подрежим «Промывка».
 - 2.2. Подрежим «Производство». Переход в этот режим происходит после режима «Промывка» при опустошении накопительной емкости. В этом режиме открыта входная запорная арматура с электроприводом, насос центробежный и насос-дозатор антискаланта запущены, а также осуществляется контроль давления исходной воды, давления после насоса центробежного и электропроводности пермеата.

3. Режим «Промывка».

Переход СОО в данный режим происходит в следующих случаях (заводские настройки):

- в режиме «Ожидание» каждые 4 часа;
- в режиме «Производство» каждые 12 часов;
- при переходе из режима «СТОП» в режим «АВТО»;
- при переходе из режима «Производство» в режим «Ожидание».

При переходе в этот режим происходит открытие входной и промывной запорный арматуры с электроприводом и запуск насоса центробежного. При этом контролируется давление на выходе насоса центробежного (мин/макс). После окончания режима «Промывка» СОО переходит в соответсвующий режим, исходя из состояния входных сигналов.

4. Режим «Авария». Переход в этот режим происходит при достижении технологическими параметрами аварийных значений. При этом происходит остановка насоса центробежного и закрытие входной запорной арматуры с электроприводом, а также выдается световая сигнализация. На ЖК дисплее контроллера отображается причина аварии. Выход из данного режима осуществляется оператором при помощи кнопки "АВАРИЯ" с красным индикатором на лицевой панели щита.

В ручном режиме управления запуск и останов насоса центробежного, открытие и закрытие запорной арматуры с электроприводом осуществляется соответствующими переключателями на передней панели шкафа управления. При этом происходит контроль технологических параметров, формирование предупредительных и аварийных сигналов (далее ПАС). Для запуска оборудования в ручном режиме требуется перевести переключатели в состояние «ВЫКЛ» и нажать кнопку «ПУСК» на экране контроллера, после чего оборудование будет включаться и выключаться по сигналам переключателей. При переходе в режим «СТОП» переключатели нужно перевести в положение «ВЫКЛ».

При включении контроллер находится в «Режим СТОП» и отображает главный экран.

В первой строке главного экрана отображается режим работы СОО («СТОП», «РУЧН» и «АВТО») и кнопка запуска СОО «Пуск».

Во второй строке отображается текущий статус («Ручное упр», «Производство», «Промывка», «Ожидание» и «Дист СТОП»).

В третьей строке отображено давление после насоса центробежного.

В четвертой строке отображена электропроводность пермеата.

На пятой строке показываются текущие дата и время.

На шестой строке отображается счетчик наработанных часов СОО.

Важная информация:

- В ручном режиме контролируются аварийные параметры и контроллер выполняет действия по аварийным уставкам;
- При работе в режиме «АВТО» нет возможности выключить оборудование (насос центробежный и запорную арматуру с электроприводами) с панели щита путем включения/выключения переключателей;
- При переключении режимов «РУЧН» и «АВТО» СОО останавливается;
- Для запуска оборудования в любом режиме требуется на панели контроллера нажать кнопку «ПУСК»;
- Невозможно в ручном режиме запустить насос центробежный с закрытой запорной арматурой с электроприводом;
- При эксплуатации в ручном режиме более 3 часов СОО остановится.

- **5. Режим «Промывка водой».** Переход системы в данный режим переходит в случае:
 - -При переходе системы из режима «ПРОИЗВОДСТВО» в режим «ОЖИДАНИЕ»
 - -Во время режима ОЖИДАНИЕ и когда бочка заполнена с определенным временным интервалом (изменяемый параметр).

При переходе в этот режим происходит переключение потока исходной воды на линию пермеата, открытие промывочного электроприводного крана, запуск насоса на системе обратного осмоса. При этом контролируется давление на выходе насоса системы обратного осмоса. После окончания режима «ПРОМЫВКА ЧИСТОЙ ВОДОЙ» технологическое оборудование переходит в состояние «ОЖИДАНИЕ».

В зависимости от качества исходной воды требуется периодическое обслуживание (разборка и чистка) запорной и регулирующей арматуры, ротаметров, уплотнительных материалов.

Общие положения

Любые ремонтные работы должны выполняться на обесточенной СОО. Обслуживание проводится сервисной службой компании производителя или авторизованными дилерами.

Если используется дозирование антискаланта, раствор антискаланта необходимо вовремя добавлять в реагентный бак, не допуская работы системы без реагента.

Так же рекомендуется проводить периодическую мойку и дезинфекцию реагентного бака, проверку всасывающего патрубка насоса-дозатора на отсутствие загрязнений, осуществлять контроль расхода антискаланта. В случае изменения расхода антискаланта, необходимо проверить исправность насоса-дозатора.

Замена картриджа фильтра механического

Необходимо устанавливать запорную арматуру в системе водоподготовки для того, чтобы перекрывать подачу исходной воды в СОО при замене картриджей в фильтре механическом.

По мере работы СОО происходит загрязнение картриджей фильтра механичекого, что приводит к снижению производительности и/или давления в СОО. Изменение данных параметров говорит о необходимости замены картриджа.

- 1. Дождитесь остановки СОО или остановите работу и отключите питание.
- **2.** Закройте запорную арматуру, не входящую в состав СОО.
- Сбросьте избыточное давление, открыв кран-пробоотборник на линии подачи исходной воды в СОО.

4. Разберите фильтры механические:

4.1. Типа Big Blue:

- с помощью специального ключа открутите колбы фильтров механических;
- достаньте картридж, слив оставшуюся воду в колбе. Промойте внутреннюю поверхность колбы теплым раствором моющего средства и тщательно промойте его холодной водой;
- вставьте новый картридж в колбу и установите ее обратно.

4.2. Типа мультипатронный:

- необходимо снять крышку фильтра механического, открутив фиксаторы.
 Открутить гайку со шпильки и снять съёмную крышку;
- достаньте картридж, слив оставшуюся воду из колбы, при помощи сливного крана или заглушки;
- далее на направляющую установитте картридж и соберите мультипатронный фильтр обратно.
- 5. Закройте кран-пробоотборник на линии подачи исходной воды в СОО.
- 6. Подключите СОО к электропитанию. Откройте запорную арматуру с электроприводом подачи исходной воды расположенную на СОО и вне неё. После заполнения СОО и выравнивания давления и расходов, стравите воздух с помощью клапана/крана, установленного на фильтре механическом.

Химическая регенерация

 В процессе эксплуатации системы, при любом качестве исходной воды, с течением времени происходит загрязнение поверхности мембранных элементов.

Признаки загрязнения мембранных элементов:

- электропроводность пермеата, приведенная к исходному давлению, возросла на 10-15 % от исходной величины;
- производительность пермеата, приведенная к исходному давлению, снизилась на 10-15 % от исходной величины.
- Образующийся слой осадка блокирует поверхность мембран, создавая дополнительное гидравлическое сопротивление потоку воды и способствует диффузии растворенных компонентов через мембрану, в результате чего снижаются показатели производительности и селективности.

- **3.** Для обеспечения длительной и стабильной работы мембранных элементов необходимо периодически проводить химическую регенерацию их поверхности.
- Чрезмерное загрязнение элементов может привести к необратимой потере характеристик и повреждениям самих элементов.
- Регенерирующие реагенты для мембран обратного осмоса бывают трех типов: щелочные, кислотные и дезинфицирующие.
- Регенерация щелочными реагентами необходима для удаления органических загрязнений (гуминовых веществ и др.), гидроксидов кремния, пленки микроорганизмов.
- Регенерация кислотными реагентами удаляет соединения железа, кальция, магния и других металлов.
- 8. Дезинфекция проводится для обеззараживания системы и недопущения развития микроорганизмов на поверхности мембран.
 - 0

Рекомендуется выполнять сначала щелочную, затем кислотную промывку и дезинфекцию. При наличии в воде органических примесей и кремния, проведение кислотной промывки перед щелочной может привести к необратимому ухудшению свойств мембраны.

Рекомендуемые реагенты:

- щелочной промывки Аминат ДМ 50;
- кислотной промывки Аминат ДМ 56;
- дезинфицирующий реагент Аминат ДМ-К, Аминат БДБ.

Эффективность реагентной промывки очень сильно зависит от температуры раствора: для кислотного и щелочного раствора оптимальная температура 30 °C – 35 °C, ниже 15 °C эффективность промывки крайне низка, более того, возможно осаждение ПАВ на поверхность мембраны и её загрязнение.

Для дезинфицирующего раствора, наоборот, крайне важно поддерживать невысокую температуру раствора (15 °C – 20 °C) во избежание повреждения мембран окислителем.

Во время промывки не допускайте роста температуры раствора выше допустимого производителем мембран значений.

- В заводской комплектации врезки для химической регенерации не предусмотрены.
- Для проведения химической регенерации СОО, необходимо смотнировать на линии исходной воды до СОО врезку подачи хим.раствора. Выход хим.раствора разместить после СОО на линии выхода пермеата и выхода концентрата. Заказчику необходимо установить запорную арматуру на линии подачи исходной воды до места врезки подачи хим.раствора, на линии выхода пермеата и выхода концентрата после врезко выхода хим.раствора.
 - Ознакомьтесь с инструкциями по технике безопасности при работе с химическими средствами и мембранными элементами.
- 2. Дождитесь остановки или остановите работу СОО и выключите питание.
- 3. При помощи шланга требуемого диаметра присоедините выход моющего раствора из емкости станции химической регенерации к впускному штуцеру химпромывки. К выпускным штуцерам присоедините шланги возврата моющего раствора в емкость станции химпромывки.
- 4. Наберите емкость станции химпромывки очищенной воды.
- Закройте регулятор возврата концентрата, откройте кран продувки концентрата и кран возврата моющего раствора на линии пермеата.
- 6. Приготовьте соответствующий регенерирующий/дезинфицирующий раствор, добавив предварительно рассчитанные на отобранный объем пермеата количество реагента, перемешав раствор до полного его растворения
 - Перед подачей раствора на мембранную систему обязательно проверьте рН раствора. Показатель рН щелочного раствора должен быть в пределах 11,5-12,0 кислотного раствора 2,0-2,5.
- 7. Откройте кран подачи регенерирующего раствора в СОО и включите насос СІР-мойки. Раствор из емкости начнет поступать в систему, вытесняя находящуюся в корпусах давления воду в канализацию, и емкость начнет опорожняться. Давление должно быть в диапазоне 0,7-1,0 бар (см. показания манометра «Давление после насоса»). Регулирование давления осуществляется поворотом крана подачи регенерирующего раствора.

- 8. Вытесните находящуюся в СОО воду, закачав ³/₄ регенерирующего раствора из емкости. Если рН или температура воды резко изменяется, откройте кран возврата регенерирующего раствора на линии сброса концентрата и закройте клапан балансировочный сброса концентрата.
- Отрегулируйте расход и давление потока регенерирующего раствора поворотом крана подачи регенерирующего раствора. Давление должно быть в диапазоне 1,5-2,0 бар (см. показания манометра «Давление после насоса»).
 - Глаза и руки оператора должны быть надежно защищены.

Крышка промывного бака должна быть плотно закрыта во время работы насоса. Будьте внимательны и не допускайте засасывания воздуха в насос, т.к. это может привести к его повреждению.

- 10. Процедура регенерации включает замачивание мембранных обратноосмотических элементов в растворе и циркуляцию раствора. Продолжительность процедуры замачивание/циркуляция составляет 15 минут. Общая продолжительность регенерации 1,5-2 ч (продолжительность регенерации может быть увеличена в зависимости от характера, типа и степени загрязнения). Контролируйте температуру, рН раствора. Изменение значения рН говорит о продолжении регенерации.
- 11. Отключите насос станции и слейте отработанный раствор из емкости.
- 12. Наполните емкость станции химпромывки чистой водой.
- **13.** Откройте клапан балансировочный сброса концентрата и закройте кран возврата регенерирующего раствора на линии продувки концентрата.
- 14. Включите насос станции химпромывки и промойте СОО в течение 20 минут.
- Проведите регенерацию/дезинфекцию раствором другого типа согласно пп. 6-14
- По окончании регенерации/дезинфекции верните все краны в исходное положение.
- 17. Запустите СОО в работу и сливайте пермеат в течение 30 минут в канализацию.
- **18.** После регенерации/дезинфекции запишите рабочие параметры СОО в «Рабочий журнал».

Замена обратноосмотических мембран

При соблюдении эксплуатационных требований и при проведении периодических регенераций, обратноосмотические мембраны служат не менее 3 лет (при этом допускается падение производительности не более чем на 20 % и/или падение селективности не более чем на 1-1,5 %).

Для замены обратноосмотических мембран необходимо выполнить следующие операции:

- 1. Дождитесь остановки или выключите СОО. Отключите питание, выключив вводной автомат или обессточьте СОО.
- 2. Убедившись, что в корпусах давления сброшено давление, проведите операции согласно пп. 2-6 в подразделе «Запуск».
- 3. Осуществите заполнение СОО согласно подразделу «Запуск».
- **4.** Проведите дезинфекцию согласно пп. 1-14 подраздела «Химическая регенерация».

Консервация обратноосмотических мембран

Если СОО останавливается более чем на 3-7 дней, для предотвращения бактериального роста на поверхности обратноосмотических мембран и её повреждения, необходимо выполнить процедуру её консервации. При консервации оборудования необходимо проводить замену консервирующего реагента (гидросульфита натрия – 0,5-1 % масс. пиросульфита натрия) НЕ РЕЖЕ одного раза в месяц!

Перед проведением консервации рекомендуется выполнять промывку и дезинфекцию СОО согласно подразделу «Химическая регенерация».

Рекомендуемые консервирующие реагенты:

- аминат ДМ-К:
- гидросульфит натрия (NaHSO₃) 0,5-1 % масс.;
- пиросульфит натрия, образующий при реакции с водой гидросульфит: $Na_2S_2O_5 + H_2O -> 2NaHSO_3$
 - Глаза и руки оператора должны быть надежно защищены.

Крышка промывного бака должна быть плотно закрыта во время работы насоса. Будьте внимательны и не допускайте засасывания воздуха в насос, т.к. это может привести к его повреждению.

- В заводской комплектации врезки для химической регенерации не предусмотрены.
- Ознакомьтесь с инструкциями по технике безопасности при работе с химическими средствами и обратноосмотическими мембранами.
- 2. Дождитесь остановки или остановите работу СОО и выключите питание.
- 3. При помощи шланга требуемого диаметра присоедините выход консервируещего раствора из емкости СІР-мойки к крану шаровому «ВХОД ПРОМЫВН. РАСТВОРА». К кранам шаровым присоедините шланги возврата регененирующего раствора в емкость СІР-мойки.
- 4. Наберите емкость СІР-мойки очищенной воды.
- 5. Закройте «КЛАПАН Б. ВОЗВР. КОНЦЕНТРАТА», откройте «КЛАПАН Б. СБРОСА КОНЦЕНТРАТА» и кран шаровый «ВЫХОД ПРОМЫВН.РАСТВОРА» на линии пермеата.
- **6.** Приготовьте консервирующий раствор, добавив предварительно рассчитанные на отобранный объем пермеата количества реагентов и перемешав раствор до полного растворения компонентов.
- 7. Откройте кран шаровый «ВХОД ПРОМЫВН.РАСТВОРА» в СОО и включите насос СІР-мойки. Раствор из емкости СІР-мойки начнет поступать в СОО, вытесняя находящуюся в корпусах давления воду в дренаж, и емкость начнет опорожняться. Давление должно быть в диапазоне 0,7-1,0 бар (см. показания манометра «ДАВЛЕНИЕ ПОСЛЕ НАСОСА»). Регулирование давления осуществляется поворотом крана шарового на линии подачи регенерирующего раствора.
- **8.** Вытесните находящуюся в СОО воду, закачав консервирующий раствор из емкости CIP-мойки.
- По окончанию раствора, отключите насос CIP-мойки и закройте «КЛАПАН Б. СБРОСА КОНЦЕНТРАТА», «КЛАПАН Б. ВОЗВР. КОНЦЕНТРАТА» на линии пермеата и подачи регенерирующего раствора в СОО.

При длительном сроке консервации (более 1 месяца), необходимо периодически проверять качество раствора (pH раствора не должен быть ниже 4). Замену консервирующего раствора рекомендуется проводить каждые 2 месяца.

Для запуска СОО в работу, необходимо вернуть все краны и клапаны балансировочные в исходное рабочее положение и запустить СОО в рабочем режиме со сливом очищенной воды в дренаж в течение 30 минут.

२२२ Устранение неисправностей

Памятка потребителей

Внимание! Гидропромывка требует больший в сравнении с производительностью объём воды. При гидропромывке входное давление не должно падать ниже 1 бара.

1. Рекомендации к техническому обслуживанию. График технического обслуживания.

Порядок проведения планового мониторинга и технического обслуживания СОО

- 1) Выполнить контроль химического состава и температуры воды.
- 2) Выполнить контроль наличия и количества утечек через торцевое уплотнение.
- 3) Протянуть резьбовые соединения, проверить надёжность соединения трубопроводов установки и подводящих труб.
- 4) Проверить соответствие требуемого напряжения электрической сети паспорту установки.
- 5) Проверить исправность запорной арматуры на входе и выходе.
- 6) Проверить рабочее давление в системе (по манометру).
- 7) Проверить работоспособность контроллера (переключение режимов установки).
- 8) Проверить входное давление и выходное давление установки.
- 9) Осмотр контактов в системе управления и в клеммной коробке на признаки перегрева и возможного короткого замыкания.
- 10) Протянуть контакты.
- 11) Замерить межфазное напряжение до включения и после включения насоса.
- 12) Замерить силу тока по фазам при открытой и закрытой задвижке, чтобы убедиться, что она не достигает критического значения.
- 13) Контроль уровня шума (приемлемый уровень шума указан в таблице в разделе техника безопасности в паспорте).

Мероприятие/операция	Сроки осмотра
Подтягивание регулировочных вентилей	Первый день после настройки каждые пол часа, затем - еженедельно
Периодическое отслеживание давления на входе	Ежедневно
Периодическое отслеживание "качества" воды	1 раз в два месяца
Периодическая очистка ЭМК	Ежемесячно
Отслеживание температуры воды	Ежедневно
Периодическая замена мембран	Не реже 1 раза в 3 года (в зависимости от условий может быть снижено вплоть до 6 месяцев)
Замена фильтра механической очистки	1 раз в полгода
Анализ химического состава воды до и после мембран	1 раз в полгода
Смазка двигателя насоса	1 раз в полгода
Проверка автомата/проводки	1 раз в 3 месяца
Протягивание болтов фишки датчика давления	1 раз в 3 месяца
Химическая регенерация	1 раз в 3 месяца
Контроль разъёмных соединений	Ежедневно
Протяжка резьбовых соединений	1 раз в месяц
Замена изнашивающихся частей	Согласно реестру
Обновление масла в плунжерном насосе (только для установок модели ROS)	1 раз в месяц
Обращение к уполномоченной для проведения сервисных работ организации для диагностики	Не реже одного раза в полгода

1. Рекомендуемое обслуживание при работе установки в неблагоприятных условиях

Условие	Коррекция
Повышенная жёсткость воды (2 мг-экв/л)	Добавление антискалланта
Конденсат/пыль	Ежемесячная проверка "фишки" датчика давления на наличие влаги, использование установок осушение воздуха, периодическое проветривание
Не жёсткая установка/помещение малой площади	Периодическая проверка резьбовых соединений
Превышение химических показателей воды	Чаще очищать соленоидный клапан Предподготовка
Высокая конверсия	Более частая регулировка вентилей

2. Самостоятельное устранение неисправностей

Признак	Неисправность	Методика исправления		
Нет индикаций на контроллере	Не отрегулирован блок питания на 24 V	Произвести регулировку до требуемого значения 24B		
Система обратного осмоса запускается, но сразу уходит в ошибку «О».	Нехватка воды на входе	Покупка гидроаккумулятора		
Течь резьбового соеди- нения	Резьбовое соединение не плотно закручено	Затянуть соединение		
Шум насоса во время работы	Двигатель смазан недостаточно/смазка двигателя высохла	Снять верхнюю крышку на двигателе и смазать компен- сатор		
При обесточенном осмо- се постоянно бежит вода в дренаж/пермеат	Электромагнитный клапан на входе засорился	Почистить электромагнитный клапан		
Загрязнение мембран/ снижение производи- тельности	Отсутствие химической промывки/CIP (допустимо для малых систем)	Замена мембран не реже одного раза в год		
Срабатывание автома- тического выключателя в шкафу автоматики	Параметры сети электропитания не соответствуют требованиям	На систему должно пода- ваться питание 220 В, 50 Гц без перепадов / падения напряжения		
шкафу автоматики	Нарушение контакта питающей цепи	Проверьте контакты подключения		
	Низкое давление исходной воды на входе в COO	Параметры СОО водоснаб- жения должны соответство- вать требованиям		
Ошибка из-за низкого давления на входе в СОО	Недостаточный диаметр трубопровода	Увеличить диаметр исходного трубопровода		
	Неисправно реле давления, отсутствует контакт между реле давления и контрол- лером	Замените реле давления		
Ошибка из-за высо- кого солесодержания	Высокая температура исходной воды	Измерьте температуру, сравните с требованиями данного руководства, устраните причину перегрева		
пермеата	Качество исходной воды не соответству- ет требованиям	Убедитесь, что показатели анализа исходной воды, соответствуют требованиям		

	Повреждение уплотнительного кольца соединительной муфты в торцевой крыш-ке корпуса давления	Замените уплотнительное кольцо		
Ошибка из-за высо- кого солесодержания пермеата	Загрязнение обратноосмотических мембран (сопровождается сниженной производительностью)	Выполните химическую регенерацию обратноосмотических мембран		
	Повреждение обратноосмотической мембраны	Замените поврежденную обратноосмотическую мембраны		
	Низкая температура исходной воды	Измерьте температуру, сравните с требованиями данного руководства, устраните причину охлаждения		
Низкая производитель- ность СОО	Слишком низкое давление на обратноо- смотической мембране или недостаточ- ный сброс концентрата	Отрегулируйте давление и потоки согласно руководству		
	Загрязнение обратноосмотических мембран	Выполните химическую регенерацию обратноосмотических мембран		
Давление на корпусах давления не поднима-	Повреждены компоненты насоса центро- бежного	Замените или отремонтируйте насос центробежный		
ется при вращении кла- панов балансировочных сброса и возврата	Поврежден или засорен один из клапанов балансировочных концентрата	Замените или прочистите клапаны балансировочные концентрата		
концентрата	Повреждена запорная арматура гидро- промывки	Замените или отремонтируйте запорную арматуру гидропромывки		
СОО не включается/ не отключается несмотря на то, что ёмкость пустая/полная	Неисправен датчик уровня воды, отсутствует контакт между датчиком и контроллером	Проверьте контакты, если проблема не устраняется, замените датчик уровня воды		

Обратитесь в службу технической

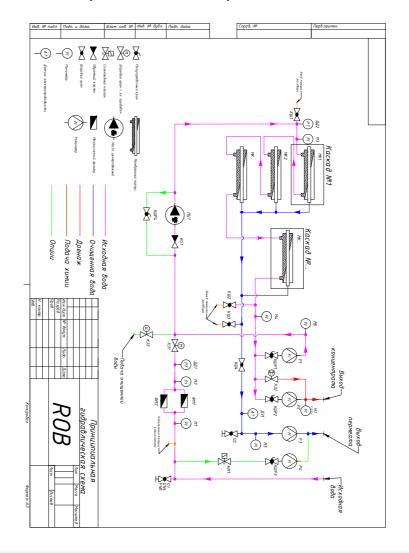
Другие неисправности поддержки по телефону: +7 996 205-25-70

+7 495 909 92 72 доб. 333 Или на почту: support@atekwater.ru

3. Признаки необходимости ремонта или замены комплектующих

- Самопроизвольное снижение расхода любого из ротаметров более чем на 25% от установленного значения за первый час работы. Самопроизвольное полное затяжение вентилей в течение 8ми часов работы и не восстановление любого уровня расхода при перезапуске установки.
- Стук или странный шум насоса.
- Запах гари.
- Искры из установки.
- Прогар или гарь на проводах.
- Установка работала при условиях нехватки воды.
- Частые перезапуски/перебои с питанием.
- Протекающая гайка на ротаметре.
- Нагревание автомата до температуры более 40 градусов.

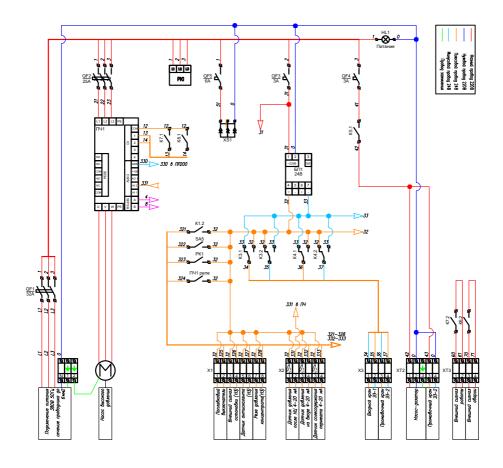
Таблица времени замены частей и узлов Товара

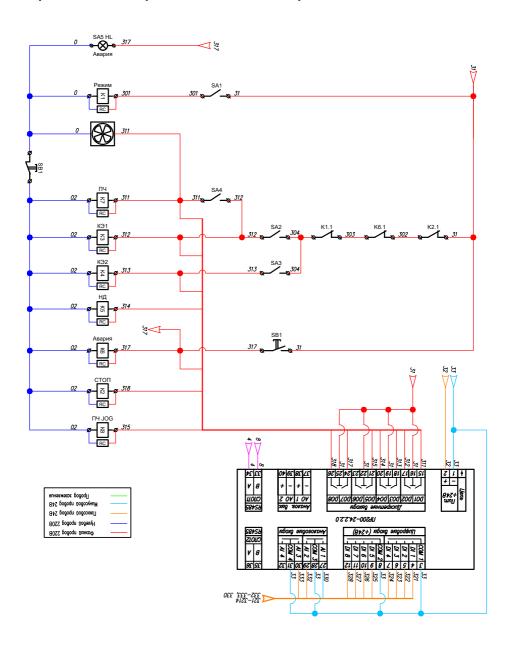

Части и узлы товара	Время наработки для замены
Конденсаторы насоса	При запуске установки чаще 2 раз в минуту конденсатор может выйти из строя
Соленоидный клапан	12 месяцев
Мембраны	36 месяцев (при соблюдении требований к качеству питающей воды)
Фильтр механической очистки	36 месяцев (при соблюдении требований к качеству питающей воды)
Регулировочные вентили	24 месяца
Резинки крышек корпусов мембран	12 месяцев
Торцевое уплотнение вала насоса	24 месяца
Уплотнительные кольца насоса	24 месяца
Подшипники двигателя насоса	24 месяца

4. Порядок разрешения споров при возникновении недостатков

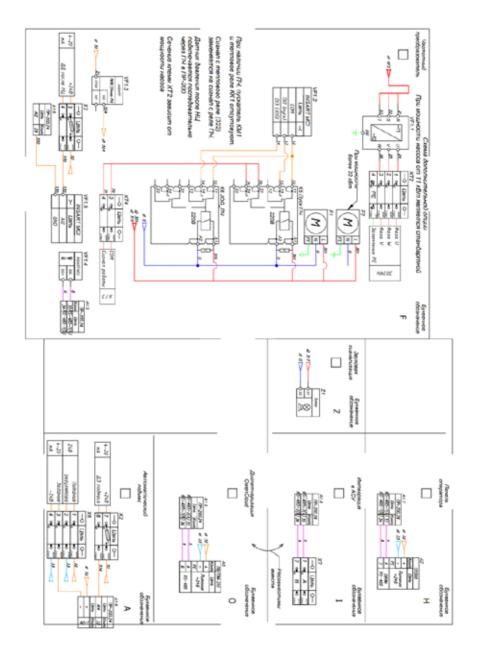
В случае спора при устранении недостатков обращаться в претензионном порядке. В случае неурегулирования путем направления и рассмотрения претензии (-ий) споры разрешаются путем обращения в уполномоченные органы (Роспотребнадзор, Прокуратура и др.) и в суды в порядке, установленном процессуальным законодательством (Гражданский процессуальный кодекс Российской Федерации, Арбитражный процессуальный кодекс Российской Федерации. Кодекс административного судопроизводства Российской Федерации).

Ж Приложения


Приложение 1. Принципиальная гидравлическая схема


⁰

Завод-изготовитель имеет право вносить изменения в состав принципиальной гидравлической схемы без ухудшения характеристик СОО.


Приложение 2. Принципиальная электрическая схема. Лист 1

Приложение 2. Принципиальная электрическая схема. Лист 2

Приложение 3. Дополнительные опции

Приложение 4. Перечень интерфейсных сигналов и данных ЛСА

Перечень входных и выходных данных, передаваемых ЛСА по последовательному интерфейсу RS-485 (Modbus RTU) (опционально другой интерфейс).

Таблица 4 – Перечень выходных данных, передаваемых ЛСА по последовательному интерфейсу RS-485 (Modbus RTU)

Настройка контроллера (Slave)							
Nº	Параметр	Значение					
1	Скорость передачи	115200					
2	Контроль четности	Отсутствует					
3	Длина бита	8					
4	Количество стоп бит	1					
5	Интерфейс	RS-485					
6	Протокол	Modbus-RTU					
7	Адрес устройства	1					

Регистр	Переменная	Тип пере- менной	Функция	Номер бита	Ед. изм	Шкала	Смещение дес.точки	Примечание
	Mask_1	Int16	Read (0x03)	32-50	50-67	67-80	80-100	> 100
	Manual	bool		0		0-1		Ручной режим
512	Auto	bool		1		0-1		Автоматический режим
	Stop	bool		2		0-1		Режим СТОП
	Wait	bool		3		0-1		Режим ожидания

	Production	bool		4		0-1		Режим производство
	Wash	bool		5		0-1		Гидропромывка
	Ext_Stop	bool		6		0-1		Внешний СТОП
	A_Hi_TDS	bool		7		0-1		Авария – высокий ТДС
512	A_Low_Pr	bool		8		0-1		Авария— сухой ход
	A_Hi_Pr	bool		9		0-1		Авария – высокое давление
	A_ND	bool		10		0-1		Авария — закончился антискалант
	A_NC			11		0-1		Авария – преобразователя частоты (при его наличии)
513	PE	Int16	Read (0x03)		Bar	0-16	0,1	Давление после насоса
514	TDS	Int16	Read (0x03)		мкСм/ см	0-200	0	Электропроводность пермеата
515	PE_In	Int16	Read (0x03)		Bar	0-16	0,1	Давление перед насосом*

^{*}Для версии по 3.0 Данный перечень актуален для базовой комплектации серийной системы. При наличии дополнительного оборудования (датчики, частотные преобразователи, обратная связь от механизмов), его сигналы так же добавляются в перечень. Конечная версия всегда находится в паспорте системы.

Обозначение	Наименование
ПР-200	Программируемое реле/контроллер
БП	Блок питания
PK	Реле контроля фаз
KM	Пускатель трехфазный
QF	Тепловое реле
SF	Автоматический выключатель
K	Реле промежуточное
SA	Переключатель двухпозиционный
SB	Кнопка аварийная
HL	Лампа сигнальная
Χ	Блок клеммных зажимов
XS	Розетка
ПЧ*	Частотный привод насоса
СП-307**	Сенсорная панель оператора
ПМ-210**	GSM шлюз
ПРМ-21.1**	Модуль расширения

^{*} Данная опция зависит от характеристик насоса центробежного и комплектуется Заводом-Изготовителем при мощности насоса 10 и более кВт или по заказу.

^{**} Оранжевым цветом обозначено опциональное оборудование

Приложение 5. Гарантийный талон №

Политика гарантийных обязательств перед Потребителем

Срок службы СОО составляет не менее 10 лет с момента ввода в эксплуатацию за исключением обратноосмотических мембран и картриджей фильтра механического, так как они являются расходными материалами.

При соблюдении эксплуатационных требований, правил хранения и правил пользования, гарантийный срок на СОО AWT RO серии 8111, 8211, 8311 (далее Товар) составляет 18 (восемнадцать) месяцев со дня фактической передачи Товара Потребителю. При невозможности установить дату передачи Товара Потребителю, гарантийный срок отсчитывается от даты передачи Товара Торговой организации, при невозможности установить дату передачи Товара Торговой организации, гарантийный срок отсчитывается от даты производства Товара. Если в течение гарантийного срока в Товаре обнаружатся недостатки, то по требованию Потребителя уполномоченный сервисный центр бесплатно отремонтирует или заменит части Товара с недостатками на приведенных ниже условиях. По вопросам неполной комплектности товара и его замены обращайтесь к Продавцу или в Торговую организацию.

1. Общие положения

- 1. Требования Потребителя по Товару с недостатками рассматриваются при представлении Акта о рекламации вместе с Гарантийным талоном, журналом сервисных работ, акта приёма-передачи.
- Наименование, серийный номер и модель Товара должны соответствовать наименованию, серийному номеру и модели, указанным в Гарантийном талоне.
- Решение вопроса о целесообразности замены части Товара с недостатками или ее ремонт остается за сервисным центром.
- 4. В случае, если Товар ремонтируется вне места нахождения сервисного центра, фактические расходы по приезду специалиста для ремонта на место установки Товара, его проживание, а также транспортировка частей Товара с недостатками и частей Товара для замены оплачиваются Продавцом/ Торговой организацией отдельно.
- 5. Товар снимается с гарантийного обслуживания в случаях указанных в пункте 3. «Перечень причин для снятия установки с гарантийного обслуживания».
- Изготовитель (и/или продавец) не несет ответственности за повреждения и ущерб, явившиеся результатом несоблюдения требований настоящего Паспорта, руководства по эксплуатации.

2. Случаи, на которые не распространяются гарантийные обязательства

1) Недостатки и повреждения, вызванные транспортировкой:

- претензии по внешнему виду оборудования, а также механические повреждения обнаруженные и зафиксированные после приёма груза в транспортной компании;
- встряхнутый манометр;
- повреждение труб/элементов внутри упаковки (обнаружены при приёмке Товара).
- 2) Снижение производительности, вызванное условиями эксплуатации или нарушением рекомендаций и/или требований Завода-изготовителя, например:
- Снижение производительности после проведения химической мойки с превышенным или заниженным количеством реагента и/или использовании не рекомендованных химических реагентов;
- Снижение производительности, связанное с уровнем загрязнения воды;
- Снижение производительности, связанное с отсутствием обслуживания установки.
- 3) Течь разъёмных соединений, к разъёмным соединениям относятся: муфта, ниппель, фланец/болт, соединение с кранами, ротаметрами, быстросъёмные соединения, соединения типа EZ Joint, болтовые соединения, прочие соединения с резьбой на элементах.
- Отклонения, вызванные неисполнением эксплуатационных условий, указанных в паспорте и руководстве по эксплуатации. Среди них, следующее:
- Сгоревшие/вытекшие конденсаторы в насосе.
- Не закрывающиеся по причине обрастания солевыми отложениями или не открывающиеся соленоидные/электромагнитные клапаны.
- Ржавеющий металл при отсутствии заземления на установке.
- 5) Недостатки, вызванные неаккуратным монтажом/демонтажом элементов Товара, например:
- Порванная резинка-уплотнение на крышке, при замене/установке мембран.
- Смятая при откручивании резьба.
- 6) Превышение шума насоса менее чем на 10 Дб по сравнению со значением, заявленным в паспорте.
- Периодическое сервисное обслуживание и замену частей Товара и расходных материалов, требующих замены в результате их нормального износа и расхода, таких, как сменные картриджи, обратноосмотические мембраны, реагенты и другие быстроизнашивающиеся части Товара, как в

части стоимости, так и в части стоимости работ по штатной их замене;

- 8) Электрические части товара, если в сети электропитания отсутствует или ненадлежащим образом выполнено заземление, а также если напряжение в электросети выходит за пределы, указанные в паспорте;
- 9) Прочие неполадки и недостатки в Товаре, возникшие в результате: небрежного или неправильного обращения, хранения или обслуживания; несоблюдения рекомендованных сроков замены расходных материалов и проведения сервисных работ; нестандартных случаев, пожара, затопления, замерзания и др; транспортировки и установки Товара лицами, неуполномоченными на то сервисным центром; механических повреждений и повреждений, вызванных воздействием агрессивных сред, дефектов СОО, в которой используется Товар.
- 10) Любые недостатки, вызванные обстоятельствами непреодолимой силы.

3. Перечень причин для снятия установки с гарантийного обслуживания

- 1) Использование установки не по назначению. Любое не указанное в паспорте использование установки является применением не по назначению.
- 2) Нарушение условий эксплуатации Товара, изложенных в руководстве по эксплуатации и бирках, закреплённых на установке.
- 3) Запуск установки с превышением максимально допустимого давления на входе.
- 4) Запуск установки при условии нехватки давления на входе.
- 5) Налив горячей воды (температура выше 40 $^{\circ}$) в установку.
- 6) Привлечение не уполномоченной сервисной службы для осуществления ремонта или обслуживания.
- 7) Наличие у Товара следов постороннего вмешательства;
- 8) Эксплуатация установки с нарушенными требованиями по качеству исходной воды.
- 9) Эксплуатация установки с поврежденными частями.
- 10) Нарушение графика технического обслуживания.
- 11) Повреждение гарантийных пломб.
- 12) Измененные настройки реле давления (давление 1, дифференциал 0,5/0,7).
- 13) Отсутствие ведения журнала сервисных работ над установкой.
- 14) Работа установки, без надлежащей условиям эксплуатации предочистки.
- 15) Работа СОО на емкость с механическим поплавком.
- 16) Совместная эксплуатация СОО и напорных фильтров без использования антивакуумного клапана.

Наименование товара	C00	
Модель		
Серийный номер		
Название торговой организации		
Адрес и телефон торговой организации		
Дата продажи		
Печать и подпись Продавца То	ррговой организации	С руководстком по эксплуатации и условиями исполнения гарантийных обязательств ознакомлен
ФИО		Подпись Потребителя
подпись		ФИО
м.п.		
		подпись

Приложение 6. Рабочий журнал

		_							
Удельная электропроводность, мкСм/см	Исходной воды (опция)								
Удел электропр мкС	Пермеата								
	Рецикл								
Расход, л/мин	Пермеат Концентрат Рецикл Пермеата								
ш	Пермеат								
	На выходе пермеата								
	На выходе концентрата								
Давление, бар	После насоса центробеж- ного								
	После фильтра механиче- ского								
	На входе								
Общее	часов работы СОО								
	Дата / время								

Приложен	ие 7. Акт ко	мплексно	го испыто	іния №	
					г. Томск
				«»	20
Модель: AW 1	Г ПОВ				
Серийный но	омер:				
Дата изготов	зления:				
Дата испыта	іний:				
Сборщик:					
СОО изготов обратного о		но действую	щему ТУ СС	00.001.61216843.1	7 «Система
гидростатич		мические ис	спытания, пр	ания (визуальны ооверка работы ксплуатации.	
Инженер ОТК:					
•	ФИО				
	подпись				

м.п.

Приложение 8. Копия декларации соответствия

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

Заявитель ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ВАТЕРКОМ" Место нахождения (адрес юридического лица) и адрес места осуществления

деятельности: 634050, Россия, город Томск, улица Березовая, дом 2/5

Основной государственный регистрационный номер 1097017010606. Телефон: +73822901577 Адрес электронной почты: info@watercom.biz

в лице Директора Маркина Андрея Андреевича

заявляет, что Система обратного осмоса марки «AWT RO», производительностью от 0,01м³/ч до 300 м³/ч. Торговая марка AWT.

Изготовитель ОБШЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ВАТЕРКОМ"

Место нахождения (адрес юридического лица) и адрес места осуществления деятельности по изготовлению продукции: 634050, Россия, город Томск, улица Березовая, дом 2/5 Продукция изготовлена в соответствии с ТУ 28.29.12-003-61216843-2017.

Код (коды) ТН ВЭД ЕАЭС: 842121000

Серийный выпуск

соответствует требованиям

Технического регламента Таможенного союза "О безопасности низковольтного оборудования" (ТР ТС 004/2011)

Технического регламента Таможенного союза "О безопасности машин и оборудования" (ТР ТС 010/2011)
Технического регламента Таможенного союза "Электромагнитная совместимость технических средств"
(ТР ТС 020/2011)

Декларация о соответствии принята на основании

М.П.

Протокола испытаний № 14883-МС-2022 от 02.11.2022 года, выданного Испытательной лабораторией «Международный стандарт» Общества с ограниченной ответственностью «Международный стандарт» (регистрационный номер аттестата аккредитации РОСС RU.32509.04ССН0.ИЛ01) Схема декларирования соответствия: 1д

Дополнительная информация

ГОСТ 12.2.003-91 "Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности", ГОСТ 12.2.007.0-75 "Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности", ГОСТ 30804.6.2-2013 (IEC 61000-6-2:2005) Совместимость технических средств электромагнитная. Устойчивость к электромагнитным помехам технических средств, применяемых в промышленных зонах. Требования и методы испытаний, ГОСТ IEC 61000-6-4-2016 Электромагнитная совместимость (ЭМС). Общие стандарты. Стандарт электромагнитной эмиссии для промышленных обстановок. Условия хранения, срок службы указаны в прилагаемой к продукции товаросопроводительной документации и/или на упаковке и/или каждой единице продукции.

Декларация в соответствии действительна с даты регистрации по 01.11.2027 включительно.

Маркин Андрей Андреевич

(Ф.И.О. закнителя)

Регистрационный номер декларации о соответствии: EAЭC N RU Д-RU.PA07.B.88696/22 Дата регистрации декларации о соответствии: 07.11.2022

Приложение 9. Копия сертификата соответствия

atekwater.ru